预培训语言模型的浪潮一直不断提高机器生成的对话的质量,然而,一些产生的响应仍然遭受过度重复,有时重复从话语中重复单词,有时重复自我产生的响应中的单词,或者两个都。不当重复单词可以显着降低生成文本的质量。受到惩罚的采样是一种流行的解决方案,减少了推理期间现有词的采样概率,但是,它非常容易受到静态的不适当的设置。将其设置得太高可以产生奇怪和不切实际的句子,同时将其设置得太低,使得抑制重复微不足道的任务。要解决上述方法的缺点,我们设计了一个上下文感知的分类器,以明确决定何时允许重复和何时采用惩罚的采样。这种分类器可以容易地与现有的解码方法集成,在保持文本的分集的同时在适当的情况下减少重复。实验结果表明,我们的方法可以产生更高质量和更真实的对话。
translated by 谷歌翻译
Gaze estimation is the fundamental basis for many visual tasks. Yet, the high cost of acquiring gaze datasets with 3D annotations hinders the optimization and application of gaze estimation models. In this work, we propose a novel Head-Eye redirection parametric model based on Neural Radiance Field, which allows dense gaze data generation with view consistency and accurate gaze direction. Moreover, our head-eye redirection parametric model can decouple the face and eyes for separate neural rendering, so it can achieve the purpose of separately controlling the attributes of the face, identity, illumination, and eye gaze direction. Thus diverse 3D-aware gaze datasets could be obtained by manipulating the latent code belonging to different face attributions in an unsupervised manner. Extensive experiments on several benchmarks demonstrate the effectiveness of our method in domain generalization and domain adaptation for gaze estimation tasks.
translated by 谷歌翻译
Two key obstacles in biomedical relation extraction (RE) are the scarcity of annotations and the prevalence of instances without explicitly pre-defined labels due to low annotation coverage. Existing approaches, which treat biomedical RE as a multi-class classification task, often result in poor generalization in low-resource settings and do not have the ability to make selective prediction on unknown cases but give a guess from seen relations, hindering the applicability of those approaches. We present NBR, which converts biomedical RE as natural language inference formulation through indirect supervision. By converting relations to natural language hypotheses, NBR is capable of exploiting semantic cues to alleviate annotation scarcity. By incorporating a ranking-based loss that implicitly calibrates abstinent instances, NBR learns a clearer decision boundary and is instructed to abstain on uncertain instances. Extensive experiments on three widely-used biomedical RE benchmarks, namely ChemProt, DDI and GAD, verify the effectiveness of NBR in both full-set and low-resource regimes. Our analysis demonstrates that indirect supervision benefits biomedical RE even when a domain gap exists, and combining NLI knowledge with biomedical knowledge leads to the best performance gains.
translated by 谷歌翻译
Despite recent progress towards scaling up multimodal vision-language models, these models are still known to struggle on compositional generalization benchmarks such as Winoground. We find that a critical component lacking from current vision-language models is relation-level alignment: the ability to match directional semantic relations in text (e.g., "mug in grass") with spatial relationships in the image (e.g., the position of the mug relative to the grass). To tackle this problem, we show that relation alignment can be enforced by encouraging the directed language attention from 'mug' to 'grass' (capturing the semantic relation 'in') to match the directed visual attention from the mug to the grass. Tokens and their corresponding objects are softly identified using the cross-modal attention. We prove that this notion of soft relation alignment is equivalent to enforcing congruence between vision and language attention matrices under a 'change of basis' provided by the cross-modal attention matrix. Intuitively, our approach projects visual attention into the language attention space to calculate its divergence from the actual language attention, and vice versa. We apply our Cross-modal Attention Congruence Regularization (CACR) loss to UNITER and improve on the state-of-the-art approach to Winoground.
translated by 谷歌翻译
We propose EM-PASTE: an Expectation Maximization(EM) guided Cut-Paste compositional dataset augmentation approach for weakly-supervised instance segmentation using only image-level supervision. The proposed method consists of three main components. The first component generates high-quality foreground object masks. To this end, an EM-like approach is proposed that iteratively refines an initial set of object mask proposals generated by a generic region proposal method. Next, in the second component, high-quality context-aware background images are generated using a text-to-image compositional synthesis method like DALL-E. Finally, the third component creates a large-scale pseudo-labeled instance segmentation training dataset by compositing the foreground object masks onto the original and generated background images. The proposed approach achieves state-of-the-art weakly-supervised instance segmentation results on both the PASCAL VOC 2012 and MS COCO datasets by using only image-level, weak label information. In particular, it outperforms the best baseline by +7.4 and +2.8 mAP0.50 on PASCAL and COCO, respectively. Further, the method provides a new solution to the long-tail weakly-supervised instance segmentation problem (when many classes may only have few training samples), by selectively augmenting under-represented classes.
translated by 谷歌翻译
During the deployment of deep neural networks (DNNs) on edge devices, many research efforts are devoted to the limited hardware resource. However, little attention is paid to the influence of dynamic power management. As edge devices typically only have a budget of energy with batteries (rather than almost unlimited energy support on servers or workstations), their dynamic power management often changes the execution frequency as in the widely-used dynamic voltage and frequency scaling (DVFS) technique. This leads to highly unstable inference speed performance, especially for computation-intensive DNN models, which can harm user experience and waste hardware resources. We firstly identify this problem and then propose All-in-One, a highly representative pruning framework to work with dynamic power management using DVFS. The framework can use only one set of model weights and soft masks (together with other auxiliary parameters of negligible storage) to represent multiple models of various pruning ratios. By re-configuring the model to the corresponding pruning ratio for a specific execution frequency (and voltage), we are able to achieve stable inference speed, i.e., keeping the difference in speed performance under various execution frequencies as small as possible. Our experiments demonstrate that our method not only achieves high accuracy for multiple models of different pruning ratios, but also reduces their variance of inference latency for various frequencies, with minimal memory consumption of only one model and one soft mask.
translated by 谷歌翻译
How to effectively leverage the plentiful existing datasets to train a robust and high-performance model is of great significance for many practical applications. However, a model trained on a naive merge of different datasets tends to obtain poor performance due to annotation conflicts and domain divergence.In this paper, we attempt to train a unified model that is expected to perform well across domains on several popularity segmentation datasets.We conduct a detailed analysis of the impact on model generalization from three aspects of data augmentation, training strategies, and model capacity.Based on the analysis, we propose a robust solution that is able to improve model generalization across domains.Our solution ranks 2nd on RVC 2022 semantic segmentation task, with a dataset only 1/3 size of the 1st model used.
translated by 谷歌翻译
With the increasing enrichment and development of the financial derivatives market, the frequency of transactions is also faster and faster. Due to human limitations, algorithms and automatic trading have recently become the focus of discussion. In this paper, we propose a bidirectional LSTM neural network based on an attention mechanism, which is based on two popular assets, gold and bitcoin. In terms of Feature Engineering, on the one hand, we add traditional technical factors, and at the same time, we combine time series models to develop factors. In the selection of model parameters, we finally chose a two-layer deep learning network. According to AUC measurement, the accuracy of bitcoin and gold is 71.94% and 73.03% respectively. Using the forecast results, we achieved a return of 1089.34% in two years. At the same time, we also compare the attention Bi-LSTM model proposed in this paper with the traditional model, and the results show that our model has the best performance in this data set. Finally, we discuss the significance of the model and the experimental results, as well as the possible improvement direction in the future.
translated by 谷歌翻译
Clustering analysis of sequence data continues to address many applications in engineering design, aided with the rapid growth of machine learning in applied science. This paper presents an unsupervised machine learning algorithm to extract defining characteristics of earthquake ground-motion records, also called latent features, to aid in ground-motion clustering and selection. In this context, a latent feature is a low dimensional machine-discovered spectral characteristic learned through nonlinear relationships of a neural network autoencoder. Clustering can be performed on the latent features and used to select a representative archetypal subgroup from a large ground-motion suite. The objective of efficient ground-motion selection is to choose records representative of what the structure will probabilistically experience in its lifetime. Three examples are presented to validate this approach, including a synthetic spectral dataset and spectra from field recorded ground-motion records. Deep embedding clustering of ground motion spectra improves on the results of static feature extraction, utilizing characteristics that represent the sparse spectral content of ground motions.
translated by 谷歌翻译
More and more stock trading strategies are constructed using deep reinforcement learning (DRL) algorithms, but DRL methods originally widely used in the gaming community are not directly adaptable to financial data with low signal-to-noise ratios and unevenness, and thus suffer from performance shortcomings. In this paper, to capture the hidden information, we propose a DRL based stock trading system using cascaded LSTM, which first uses LSTM to extract the time-series features from stock daily data, and then the features extracted are fed to the agent for training, while the strategy functions in reinforcement learning also use another LSTM for training. Experiments in DJI in the US market and SSE50 in the Chinese stock market show that our model outperforms previous baseline models in terms of cumulative returns and Sharp ratio, and this advantage is more significant in the Chinese stock market, a merging market. It indicates that our proposed method is a promising way to build a automated stock trading system.
translated by 谷歌翻译